1,024 research outputs found

    Two Bessel Bridges Conditioned Never to Collide, Double Dirichlet Series, and Jacobi Theta Function

    Full text link
    It is known that the moments of the maximum value of a one-dimensional conditional Brownian motion, the three-dimensional Bessel bridge with duration 1 started from the origin, are expressed using the Riemann zeta function. We consider a system of two Bessel bridges, in which noncolliding condition is imposed. We show that the moments of the maximum value is then expressed using the double Dirichlet series, or using the integrals of products of the Jacobi theta functions and its derivatives. Since the present system will be provided as a diffusion scaling limit of a version of vicious walker model, the ensemble of 2-watermelons with a wall, the dominant terms in long-time asymptotics of moments of height of 2-watermelons are completely determined. For the height of 2-watermelons with a wall, the average value was recently studied by Fulmek by a method of enumerative combinatorics.Comment: v2: LaTeX, 19 pages, 2 figures, minor corrections made for publication in J. Stat. Phy

    System of Complex Brownian Motions Associated with the O'Connell Process

    Full text link
    The O'Connell process is a softened version (a geometric lifting with a parameter a>0a>0) of the noncolliding Brownian motion such that neighboring particles can change the order of positions in one dimension within the characteristic length aa. This process is not determinantal. Under a special entrance law, however, Borodin and Corwin gave a Fredholm determinant expression for the expectation of an observable, which is a softening of an indicator of a particle position. We rewrite their integral kernel to a form similar to the correlation kernels of determinantal processes and show, if the number of particles is NN, the rank of the matrix of the Fredholm determinant is NN. Then we give a representation for the quantity by using an NN-particle system of complex Brownian motions (CBMs). The complex function, which gives the determinantal expression to the weight of CBM paths, is not entire, but in the combinatorial limit a→0a \to 0 it becomes an entire function providing conformal martingales and the CBM representation for the noncolliding Brownian motion is recovered.Comment: v3: AMS_LaTeX, 25 pages, no figure, minor corrections made for publication in J. Stat. Phy

    Determinantal process starting from an orthogonal symmetry is a Pfaffian process

    Full text link
    When the number of particles NN is finite, the noncolliding Brownian motion (BM) and the noncolliding squared Bessel process with index ν>−1\nu > -1 (BESQ(ν)^{(\nu)}) are determinantal processes for arbitrary fixed initial configurations. In the present paper we prove that, if initial configurations are distributed with orthogonal symmetry, they are Pfaffian processes in the sense that any multitime correlation functions are expressed by Pfaffians. The 2×22 \times 2 skew-symmetric matrix-valued correlation kernels of the Pfaffians processes are explicitly obtained by the equivalence between the noncolliding BM and an appropriate dilatation of a time reversal of the temporally inhomogeneous version of noncolliding BM with finite duration in which all particles start from the origin, Nδ0N \delta_0, and by the equivalence between the noncolliding BESQ(ν)^{(\nu)} and that of the noncolliding squared generalized meander starting from Nδ0N \delta_0.Comment: v2: AMS-LaTeX, 17 pages, no figure, corrections made for publication in J.Stat.Phy

    Colloquium: Physics of optical lattice clocks

    Full text link
    Recently invented and demonstrated, optical lattice clocks hold great promise for improving the precision of modern timekeeping. These clocks aim at the 10^-18 fractional accuracy, which translates into a clock that would neither lose or gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here we discuss the principles of operation of these clocks and, in particular, a novel concept of "magic" trapping of atoms in optical lattices. We also highlight recently proposed microwave lattice clocks and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.Comment: 18 pages, 15 figure

    Noncolliding Squared Bessel Processes

    Full text link
    We consider a particle system of the squared Bessel processes with index ν>−1\nu > -1 conditioned never to collide with each other, in which if −1<ν<0-1 < \nu < 0 the origin is assumed to be reflecting. When the number of particles is finite, we prove for any fixed initial configuration that this noncolliding diffusion process is determinantal in the sense that any multitime correlation function is given by a determinant with a continuous kernel called the correlation kernel. When the number of particles is infinite, we give sufficient conditions for initial configurations so that the system is well defined. There the process with an infinite number of particles is determinantal and the correlation kernel is expressed using an entire function represented by the Weierstrass canonical product, whose zeros on the positive part of the real axis are given by the particle-positions in the initial configuration. From the class of infinite-particle initial configurations satisfying our conditions, we report one example in detail, which is a fixed configuration such that every point of the square of positive zero of the Bessel function JνJ_{\nu} is occupied by one particle. The process starting from this initial configuration shows a relaxation phenomenon converging to the stationary process, which is determinantal with the extended Bessel kernel, in the long-term limit.Comment: v3: LaTeX2e, 26 pages, no figure, corrections made for publication in J. Stat. Phy

    Lifetime measurement of the ^3P_2 metastable state of strontium atoms

    Full text link
    We have measured the lifetime of the 5s5p ^3P_2 metastable state of strontium atoms by magneto-optically trapping the decayed atoms to the ground state, which allowed sensitive detection of the rare decay events. We found that the blackbody radiation-induced decay was the dominant decay channel for the state at T = 300 K. The lifetime was determined to be 500^{+280}_{-130} s in the limit of zero temperature.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

    Get PDF
    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section as a function of muon energy and angle for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy and the single differential cross section as a function of 4-momentum transfer squared are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.Comment: 6 pages, 6 figures, Proceedings of the 6th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt09
    • …
    corecore